Roadmap to a Compact Fusion Device based on the Sheared Flow Stabilized Z-Pinch*

Uri Shumlak for the FuZE Team

U. Shumlak^{1,3}, H.S. McLean², B.A. Nelson^{1,3}, A. Schmidt², E.L. Claveau¹, B. Conway³, E.G. Forbes¹, D.P. Higginson², J.M. Mitrani², A.D. Stepanov¹, K.T. Tummel², T.R. Weber¹, Y. Zhang¹

> ¹University of Washington ²Lawrence Livermore National Laboratory ³Zap Energy

> > ARPA-E Fusion Workshop

13-14 August 2019 San Francisco, California

Presentation Outline

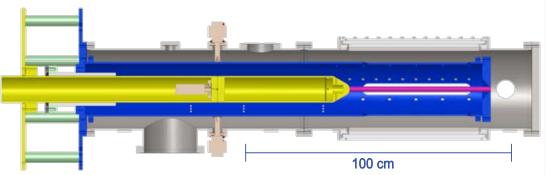
- The simplicity and many other advantages of the Z-pinch
- Current status of the sheared flow stabilized (SFS) Z-pinch
- Historical scientific developments of the Z-pinch leading to sheared flow stabilization approach
- Theoretical work indicating sheared flows may stabilize the Z-pinch
- DOE-funded basic science investigation of sheared flow stabilization in the Z-pinch
- ARPA-E-funded FuZE, Fusion Z-pinch Experiment, project and progress towards a compact low-cost fusion device based on the SFS Z-pinch
- Comments on the progress for the SFS Z-pinch concept and possible parallels for other concepts

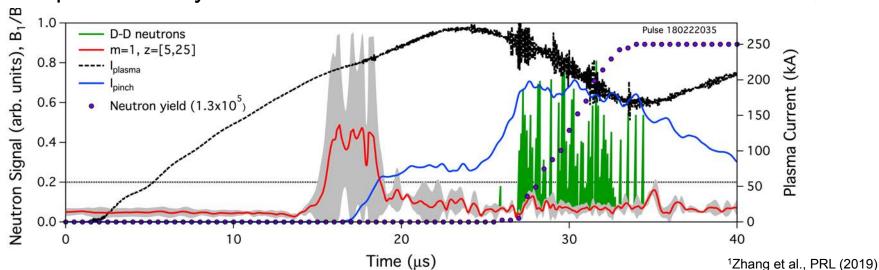
Z-pinch configuration has many appealing features

The Z-pinch has the simplest geometry of any magnetic confinement configuration:

- cylindrical plasma column
- directly driven axial current

- $\frac{dp}{dr} = -\frac{B}{\mu_o r} \frac{d(rB)}{dr}$
- self-generated magnetic field compresses the plasma
- \triangleright perfect utilization of the magnetic field for compression, β =100%
- > no magnetic field coils: greatly reducing cost, size, and complexity
- increasing the current generates higher plasma parameters, increased fusion production, and smaller plasma radius





Today: Demonstrated sustained fusion from FuZE

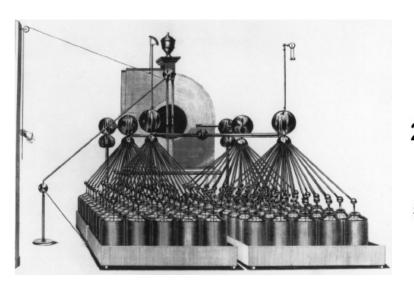
Today, the sheared flow stabilized Z-pinch regularly produces steady fusion reactions over an extended period of time¹ from a compact device.

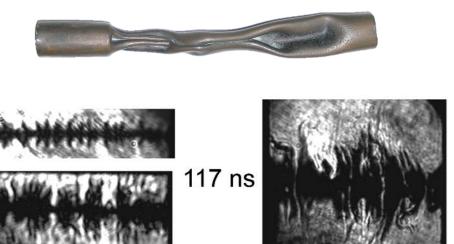
- stable plasma: 50 cm long, 0.3 cm radius
- fusion reactions along 34 cm length, likely thermonuclear process
- extensive computational modeling
- $T_i \approx T_e \approx 1.0 \text{ keV}$
- $n_e \approx 10^{17} \text{ cm}^{-3}$
- B_a≈ 10 T
- continue to scale up current & yield

Z-pinch research predates nuclear fusion understanding

1790: Earliest "Z-pinch" research by Martinus van Marum¹

1905: Observation of crushed lightning rod by Pollock & Barraclough²

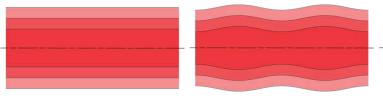

1907: "Pinch phenomenon" in liquid conductor by Northrup³

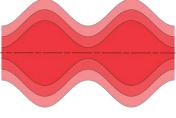

1934: Theoretical model of plasma Z-pinch by Bennett

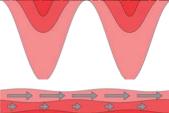
1950: Z-pinch was Project Sherwood Jim Tuck's preferred approach to achieve controlled fusion

1957: Theory and experiments demonstrated virulent instabilities, m = 0, 1

1998: Performance of Z-pinches using frozen deuterium fibers was severely limited by these instabilities⁴


Key Innovation: sheared flows can stabilize the Z-pinch


Prior theoretical and experimental research focused on static Z-pinch plasmas, and demonstrated that m = 0 and m = 1 instabilities persist.


1995: Theoretically demonstrated that a Z-pinch could be stabilized with

low-speed axial flows* → sheared flow stabilization (SFS).

No flow

Sheared flow

$$\frac{dv_z}{dr} \neq 0$$

VOLUME 75, NUMBER 18

PHYSICAL REVIEW LETTERS

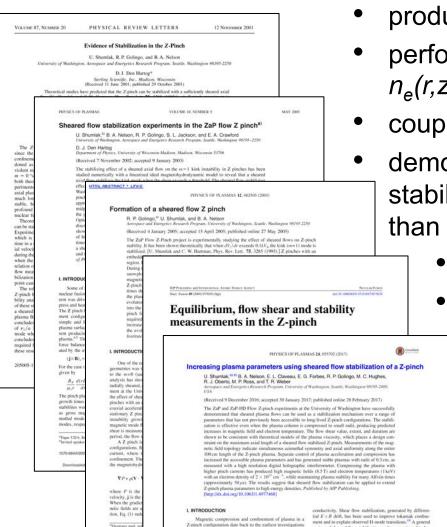
30 OCTOBER 1995

Sheared Flow Stabilization of the m = 1 Kink Mode in Z Pinches

U. Shumlak*

High Energy Plasma Division, Phillips Laboratory, Kirtland Air Force Base, Kirtland, New Mexico 87117-5776

C. W. Hartman


Lawrence Livermore National Laboratory, Livermore, California 94550 (Received 6 April 1995)

The effect of a sheared axial flow on the m=1 kink instability in Z pinches is studied numerically by reducing the linearized magnetohydrodynamic equations to a one-dimensional displacement equation. An equilibrium is used that is made marginally stable against the m=0 sausage mode by tailoring its pressure profile. The principal result reveals that a sheared axial flow stabilizes the kink mode when the shear exceeds a threshold that is dependent on the location of the conducting wall. For the equilibria studied here the maximum threshold shear (v^{μ}/kV_0^{μ}) was about 0.1.

* NAS Postdoc Fellowship

Scientific advancement of sheared flow stabilization

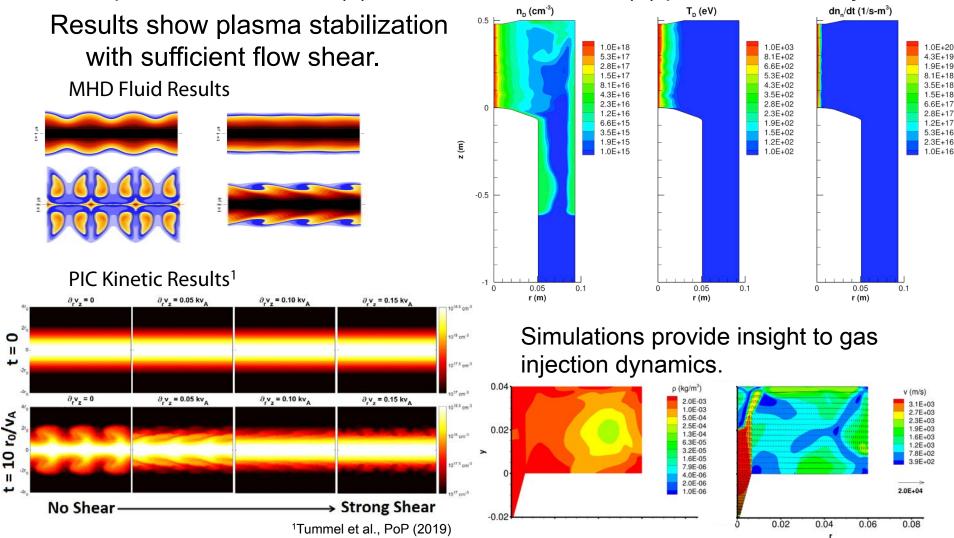
1998 – 2014: DOE-funded* experimental project at the University of Washington to conduct a scientific investigation of sheared flow stabilization in the Z-pinch → ZaP & ZaP-HD projects

- produced long-lived, stable Z-pinch plasmas
- performed detailed measurements¹⁻⁶: $n_e(r,t)$, $n_e(r,z)$, $B(\theta,z,t)$, B(r), $T_i(r)$, T_e , $v_z(r,t)$
- coupled computational investigations⁷⁻¹²
 - demonstrated robustness of sheared flow stabilization: stable for 1000's times longer than static pinch
 - investigated limits of stability
 - developed understanding of plasma behavior and how to control it
 - achieved pinch currents of 50 kA

*Innovative Confinement Concepts and Joint DOE-NNSA HEDLP Programs

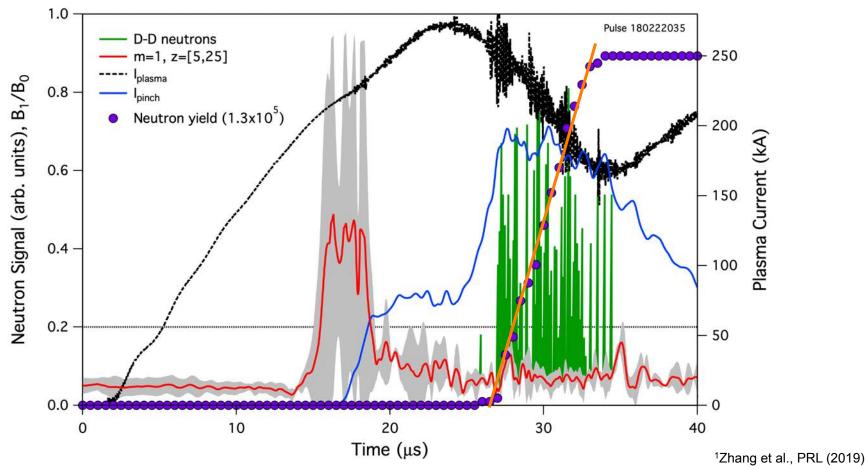
¹Golingo & S, RSI (2003); ²Jackson & S, RSI (2006); ³Golingo et al., RSI (2010) ⁴Vogman & S, RSI (2011); ⁵Knecht et al., IEEE TPS (2014); ⁶Ross & S, RSI (2016) ⁷S & Roderick, PoP (1998); ⁸S et al., PRL (2001); ⁹S et al., PoP (2003) ¹⁰Loverich & S, PoP (2006); ¹¹S et al., NF (2009); ¹²S et al., PoP (2017)

FuZE Project to investigate the SFS Z-pinch for fusion

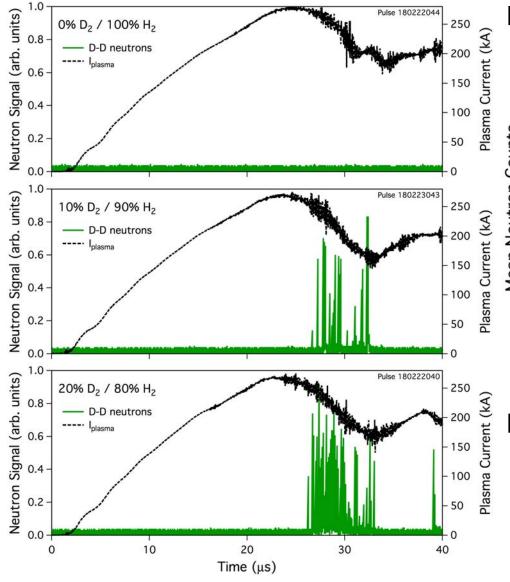

ARPA-E-funded Fusion Z-pinch Experiment, FuZE, expands on the success of ZaP and ZaP-HD.

- more robust device that achieves fusion
- concerted effort on kinetic and fluid modeling
- highly effectual UW & LLNL collaboration
- modest funding level to push towards breakeven
- Objective: scientific investigation to explore the potential of the SFS Z-pinch as a compact fusion device

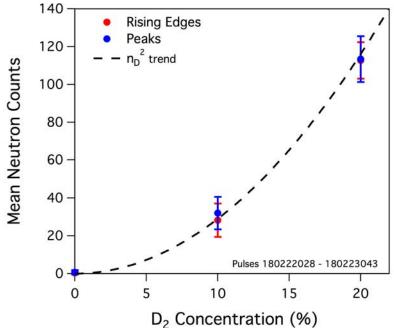
FuZE benefits from detailed numerical simulations


Nonlinear fluid & kinetic simulations using Mach2 (MHD), WARPX (2-fluid), and LSP (PIC) to: (a) study sheared flow stabilization, (b) design experimental details, (c) model whole device, (d) predict neutron yield

Fusion neutrons from FuZE deuterium plasmas


When gas mixtures containing deuterium, $D_2 - H_2$, are used to make FuZE plasmas, sustained fusion neutron production¹ ($\approx 8 \mu s$) is detected coincident with quiescent period and large pinch current.

Measurements indicate a steady neutron emission to within statistical expectations consistent with a thermonuclear process.

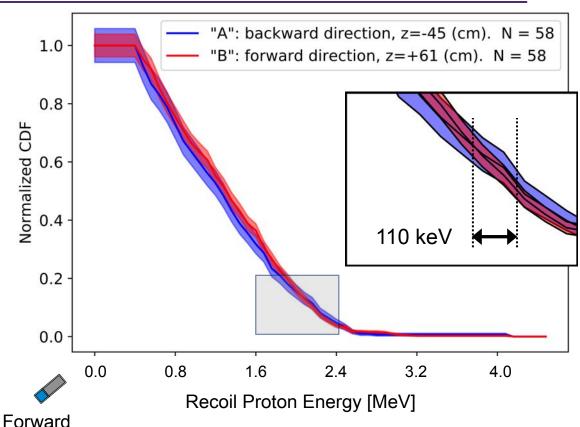


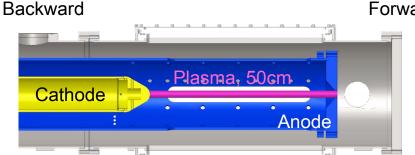
Fusion neutrons scale with deuterium concentration

Neutron counts disappear for plasmas with no deuterium, 100% H₂.

Dependence agrees with expected thermonuclear scaling with n_D^2 .

Neutron yield of 10^5 agrees with theoretical thermonuclear process with $T_i \approx 1.2$ keV.


$$N_{neutrons} = \int \frac{1}{2} n_D^2 \langle \sigma v \rangle \tau dV$$

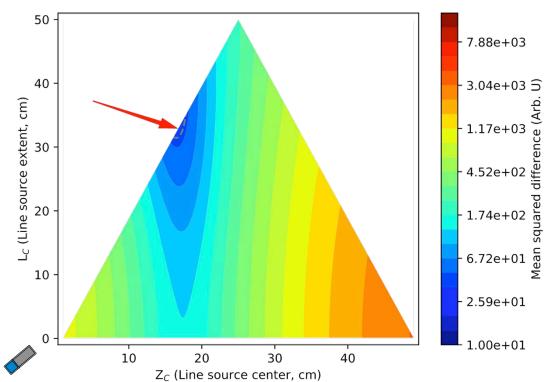

Neutron isotropy measurements exclude beams >9 keV

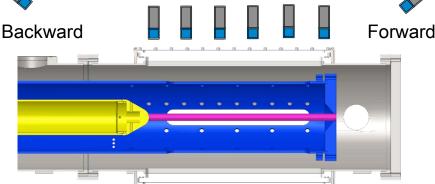
Difference in neutron energy inferred by measuring proton recoil from two extreme angles.

Maximum measured energy difference is 110 keV.

For 2.45 MeV neutrons, this difference corresponds to a deuteron beam energy of 9 keV.

$$E_{n_{\text{max}}} = \frac{1}{8} \left(\sqrt{E_b} + \sqrt{3(E_b + 2E_f)} \right)^2$$



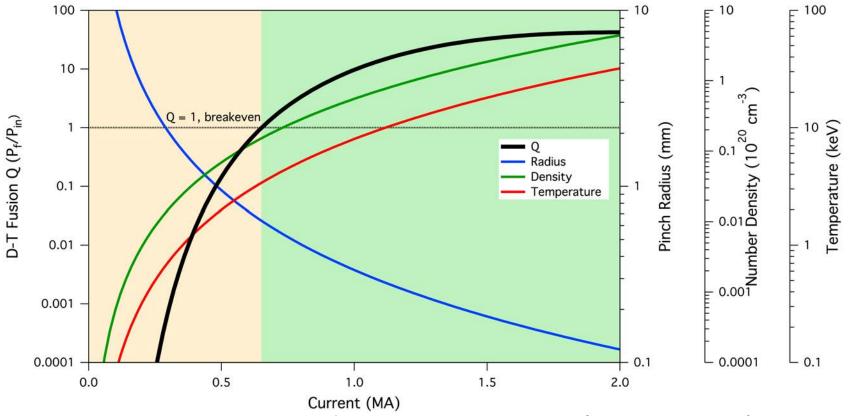


Spatially-resolved measurements indicate line source

Neutron emission volume can be calculated from measurements of multiple detectors at varying locations.

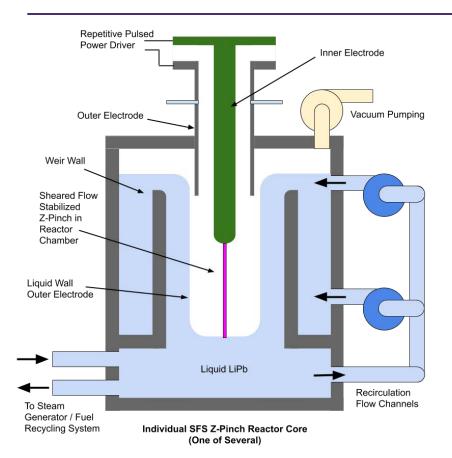
Least squares fit to the data gives emission volume: 33.6 cm length, L_c 16.8 cm centroid, Z_c

¹ Mitrani et al., "Using plastic scintillator detectors for diagnosing neutron production on a sheared-flow stabilized (SFS) Z-pinch", NIMA


Adiabatic scaling yields scientific breakeven at 650 kA¹

Starting with experimentally achieved plasma parameters, increasing the current with a fixed linear density rapidly reaches Q>1 conditions. Fusion core² remains compact even at high Q, resulting in a low-α fusion

Sample instantaneous conditions


I _p = 2 MA	T = 32 keV
L = 75 cm	a = 120 µm
Q = 29	$P_{\rm f} = 3.1 {\rm TW}$

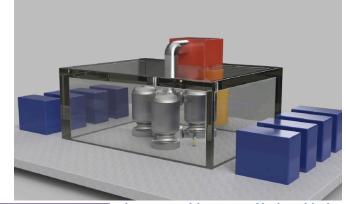
space thruster³ with high specific impulse ≈10⁶ s & high thrust ≈10⁵ N.

¹S et al., FST (2012), S et al., PoP (2017); ²Forbes et al., FST (2019); ³ S et al., AIAA 2006-4805

SFS Z-Pinch reactor conceptual design is underway

SFS Z-pinch reactor conceptual design

- several cores share tritium-handling facility
- pulsed at 10 Hz, 190 MWth each core


Liquid LiPb serves multiple functions:

- outer electrode
- heat transfer fluid
- biological shield
- tritium-breeding blanket

Future technology developments:

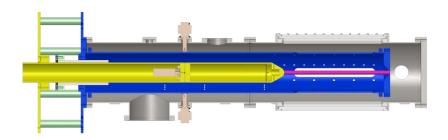
- liquid LiPb
- solid electrode design
- repetitive pulsed power

Bechtel, WSI, and Dec. Sys. SFS Z-Pinch Study w/3 Cores

Accelerated progress on the SFS Z-pinch fusion concept

Critical factors converged to facilitate progress:

- 1. <u>ARPA-E funding</u> has enabled us to push the SFS Z-pinch concept much further than previously possible, e.g. 8x current increase.
- Keys include <u>deliberate scientific approach</u> and the <u>excellent people</u> of the FuZE team: UW & LLNL scientists, postdocs, graduate students, undergraduate students
- 3. <u>Computational power and simulation tools</u> allow detailed modeling of sheared flow stabilization that complement the experimental effort.
- Inherently compact low-cost fusion device means that the embodiment of a power-producing fusion reactor also remains compact.


Other innovative confinement concepts have potential for significant progress as fusion devices: spheromak, FRC, levitated dipole, MagLIF, MIF, mirrors, ···

Zap Energy is driving technology forward

- Continued funding by ARPA-E Open award and strategic investor base
- Increasing current and corresponding plasma parameters towards higher Q
- Building next generation device to replace FuZE next year
- Moving into new facility in the Seattle area
- Continuity of strong existing team and adding new personnel
- Ongoing partnerships with UW and LLNL

